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Abstract

We present a method for visualizing unsteady flow by displaying its vortices. The vortices are
identified by using a vorticity-predictor pressure-corrector scheme that follows vortex cores. The
cross-sections of a vortex at each point along the core can be represented by a Fourier series. A
vortex can be faithfully reconstructed from the series as a simple quadrilateral mesh, or its recon-
struction can be enhanced to indicate helical motion. The mesh can reduce the representation of
the flow features by a factor of one thousand or more compared with the volumetric dataset. With
this amount of reduction it is possible to implement an interactive system on a graphics worksta-
tion to permit a viewer to examine, in three dimensions, the evolution of the vortical structures in a
complex, unsteady flow.
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1 Introduction

In order to study the complex behavior of an unsteady (i.e., time-varying) fluid flow, one

might imagine being immersed within the flow but not disturbing it. One could then roam

about the flow field, free to observe its development or to measure quantities of interest. This

scenario is impossible in real life, of course. The physical presence of a human observer

would change the very flow under inspection. However, a direct numerical simulation (DNS)

of the flow produces all the relevant flow quantities that an appropriate visualization system

would need in order to let a viewer navigate through the flow. In order to develop such an

interactive system, one must (1) locate the salient structures within the three-dimensional flow

data, (2) represent the structures geometrically, and (3) display them to the viewer, preferably

at interactive frame rates of 20 updates per second or more.

What, exactly, are the important structures within an unsteady flow? Vortices are typically

considered the most important structures in flow fields. Consider the effects of vortices over a

range of spatial scales: large-scale vortices are responsible for hurricanes and tornadoes;

medium-scale vortices affect the handling characteristics of an airplane; small-scale vortices

are the fundamental building blocks of the structure of turbulent flow. Vortices control the

dynamics of the flow in the sense that if they are removed the flow becomes quiescent. As an

example, hairpin vortices are considered to be “a major sustaining flow structure involved in

the perpetuation of turbulent boundary layers” [1]. Leonard[2] emphasizes that

...it is mathematically correct and often very convenient to consider inviscid fluid

dynamics in terms of parcels of vorticity which induce motion on each other as an

alternative to pressure-velocity considerations.

One would like, therefore, to visualize a flow by locating and displaying its vortices. This

paper describes how a predictor-corrector technique can locate vortex structures in three-

dimensional flow data [3] with enough data-reduction to store and animate them on a worksta-

tion.

The predictor-corrector technique is effective at locating vortices even in turbulent flow

data. Simulating an unsteady flow may require hundreds or even thousands of time steps, each

containing many megabytes of data. The vortices themselves may occupy significant subvol-

umes of the original volumetric data. A typical scientific workstation does not have adequate

memory to store more than a few frames of the original data; data reduction is absolutely
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essential for the interactive display of time-varying vortices. The predictor-corrector scheme

provides a terse, one-dimensional representation of vortex tubes, which offers significant

reduction of the flow data. This benefit suggests the design of an interactive visualization sys-

tem that can re-play the development of a computed flow while allowing a viewer to explore

the vortex shapes with a graphics workstation.

The paper is organized as follows. Section 2 presents a survey of other techniques that

attempt to identify vortices. Section 3 presents our predictor-corrector scheme and discusses

some of the programming considerations that are necessary to make the scheme efficient. Sec-

tion 4 describes how we calculate the cross-sections of the vortex tube and how we represent

them in a compressed fashion using Fourier analysis. In section 5 we show how the vortex

skeletons, together with an efficient representation of the cross-sections, offer substantial data-

reduction in representing features of a flow. We describe the process of reconstructing the vor-

tex tubes from the compressed format and report on the successful development of an interac-

tive graphical system based on these techniques.

2 Survey of Identification Schemes

The term “vortex” connotes a similar concept in the minds of most fluid dynamicists: a helical

pattern of flow in a localized region. There are mathematical definitions for “vorticity” and

“helicity,” but vortical flow is not completely characterized by them. For example, a shear

flow exhibits vorticity at every point even though there is no vortical motion. A precise defini-

tion for a vortex is difficult to obtain— a fact supported by the variety of efforts outlined

below.

2.1 Ideal Definition

It is surprisingly difficult to establish a definition of a vortex that is robust enough to locate all

the coherent structures that a flow physicist would consider to be vortices. Robinson [4] sug-

gests the following working definition for a vortex.

A vortex exists when instantaneous streamlines mapped onto a plane normal to the

vortex core exhibit a roughly circular or spiral pattern, when viewed from a reference

frame moving with the center of the vortex core.

Robinson [5] and Robinson, Kline, and Spalart [6] use the above definition to confirm that

a particular structure is, in fact, a vortex. Unfortunately, this definition requires a knowledge
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of the vortex core before one can determine whether something is a vortex. The definition,

therefore, does not lend itself to a convenient algorithm for detecting vortices.

2.2 Isovalue of a Scalar Field

Is there a scalar value that can be easily derived from flow quantities such that a single isov-

alue yields surfaces surrounding the vortical structures?One might imagine a scalar field that

attains a non-negative value in the interior of the vortices but attains negative values elsewhere. The

zero-valued isosurfaces would define the boundaries of the vortices. Several attempts have been made

to locate vortices as isosurfaces of scalar quantities.

Low Pressure

Robinson and his colleagues find that elongated low-pressure regions in incompressible turbu-

lent flows almost always indicate vortex cores. Isosurfaces of low pressure are usually effec-

tive at capturing the shape of an individual vortex (fig. 1a), especially if the flow field contains

no solid bodies. Pressure surfaces become indistinct where vortices merge, however, and a

high-quality image can easily require thousands of triangles to create the surface. The need to

compress the representation becomes acute when visualizing time-varying data.

Eigenvalues of the Velocity Gradient

Chong, Perry, and Cantwell [7] define a vortex core as a region where the velocity-gradient

tensor has complex eigenvalues. In such a region, the rotation tensor dominates over the rate-

of-strain tensor. Soria and Cantwell [8] use this approach to study vortical structures in free-

shear flows. At points of large vorticity, the eigenvalues of the velocity-gradient matrix are

determined: a complex eigenvalue suggests the presence of a vortex. This method correctly

identifies the large vortical structures in the flow. However, the method also captures many

smaller structures without providing a way to link the smaller vortical volumes with the larger

coherent vortices of which they might be a part (fig. 1b).

2.3 Geometry of the Vortex Core

Instead of defining the bounding surface of a vortex, some researchers have sought ways to

locate the one-dimensional core through the vortex center. Various schemes for determining

the geometry of a vortex core are described below.

Vorticity Lines

Vorticity is a vector quantity proportional to the angular velocity of a fluid particle. It is

defined as

ω = ∇ × u
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whereu is the velocity at a given point. Vorticity lines are integral curves of vorticity.

Moin and Kim [9] [10] use vorticity lines to visualize vortical structures in turbulent channel

flow. The resulting curves are extremely sensitive to the choice of initial locationx0 for the

integration. As Moin and Kim point out [9],

If we choosex0 arbitrarily, the resulting vortex line is likely to wander over the whole

flow field like a badly tangled fishing line, and it would be very difficult to identify the

organized structures (if any) through which the line may have passed.

Fig. 6 illustrates the potential for vortex lines to create a tangle [10]. To avoid such a confus-

ing jumble, they carefully select the initial points. However, Robinson [5] shows that even

experienced researchers can be surprisingly misled by ordinary vorticity lines.The problem

with vorticity lines in a shear flow is not just that numerical techniques of integration propagate error.

Even an errorless analytic integration fails to follow a vortex core that is not aligned in the direction of

mean shear.Jiminez points out that a vortex tube “does not have vorticity perfectly aligned

along its axis [core], nor does a given vortex line necessarily remain within it over its entire

length” [11].In order for an integral curve through a vector field to coincide with the core, the vector

field must be aligned with the core.

Vorticity and Enstrophy

Jiminezet al. propose a scheme for tracing vortex cores that shares the spirit of our technique

[11]. They consider points of maximum enstrophy (squared magnitude of vorticity) to lie

along vortex cores. Given such a point, they integrate along the core using a two-step process.

The first step is to follow the vorticity to the next grid plane. Then, within that plane, they

inspect the nearest four grid points and select the one with the largest enstrophy. The method

marches from grid point to grid point within the volume. They applied the technique to locate

vortices within isotropic turbulence. Near the wall of a shear flow, there is a large magnitude

of vorticity even when no vortices are present. Thus the technique is not well-suited to the

task of identifying vortices in a shear flow. Instead of consulting the enstrophy, our technique

uses pressure gradients for the corrector phase. In addition, we use higher-order interpolation

in order to resolve the vortex core between grid points.

Curvature and Helicity

Yates and Chapman [12] carefully explore two definitions of vortex cores. Unfortunately, the

analyses and conclusions for both definitions are appropriate only for steady flows. By one

definition, the vortex core is the line defined by the local maxima of normalized helicity (the

dot product of the normalized velocity and vorticity). Fig. 1c shows an isosurface of constant

helicity. Notice that the surface fails to capture the “head” on the upper-right side of the hair-
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pin vortex. This shows that the local maxima fail to follow the core. In the other definition, a

vortex core is an integral curve that has minimum curvature. If there is a critical point on a

vortex core, then that point must be a spiral-saddle. The eigenvector belonging to the only real

eigenvalue of the spiral-saddle corresponds, locally, to an integral curve entering or leaving

the critical point. By integrating this curve, the entire vortex core may be visualized [13].For

our particular flow data, however, we find that these curves (as calculated by FAST, the Flow Analysis

Software Toolkit [14]) can miss the vortex completely. It may be that the critical points are not suffi-

ciently resolved in the flow data for this technique to capture the cores; in that case the amount of data

must be more finely sampled in order to locate vortex cores with this technique, at the expense of

(a)

(b)

(c)

(d)

Figure 1.
Different schemes used to identify a vortex.
Each image visualizes the flow at the same time
step. From top: (a) isosurface of constant
pressure; (b) isosurfaces of complex-valued
eigenvalues of the velocity-gradient matrix; (c)
isosurface of constant helicity (dark line
indicates missing vortex head; (d) isosurfaces of
constant vorticity; (e) our predictor-corrector
technique with Fourier cross-sections.

(e)
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increasing the data storage and slowing the numerical simulation. Since the technique is derived for

steady flows, it may be that even with finer sampling the cores would not be detected.

User-guided Search

Bernard, Thomas, and Handler [15] use a semi-automated procedure to identify quasi-stream-

wise vortices. Their method finds local centers of rotation in user-specified regions in planes

perpendicular to the streamwise direction of a turbulent channel flow. Experienced users can

correctly find the critical vortices responsible for the maintenance of the Reynolds stress.

Their method captures the vortices that are aligned with the streamwise direction, but in free-

shear layers and transitional boundary layers, the significant spanwise vortices go undetected.

Because it depends heavily on user intervention, the process is tedious and is dependent upon

the individual skill of the user.

2.4 Vortex Shape Detection

Vortices exhibit the characteristic shape of elongates tubes. Below we describe two identifica-

tion schemes that exploit this shape-knowledge to locate vortices.

Cylinder With Maximum Vorticity

Villasenor and Vincent [16] present an algorithm for locating elongated vortices in three-

dimensional time-dependent flow fields. They start from a seed point and compute the average

length of all vorticity vectors contained in a small-radius cylinder. They repeat this step for a

large number of cylinders that emanate from the seed point. The cylinder with the maximum

average becomes a segment of the vortex tube. They use only the magnitudes (not the direc-

tions) of vorticity; as a consequence the algorithm can inadvertently capture structures that are

not vortices.

Vorticity and Vortex Stretching

Zabuskyet al. [17] use vorticity |ω| and vortex stretching |ω ⋅ ∇u| /|ω| in an effort to under-

stand the dynamics of a vortex reconnection process. They fit ellipsoids to the regions of high

vorticity. Vector field lines of vorticity and of vortex stretching emanate from the ellipsoids. In

flows with solid boundaries or a mean straining field, the regions with large vorticity magni-

tudes do not necessarily correspond to vortices (fig. 1d); hence, the ellipsoids do not always

provide useful information.

2.4 Summary of Survey

Some of the above techniques share a simple property: they aim to capture vortices by consulting a

scalar field derived from certain flow quantities. Without having a canonical scalar definition of a vor-

tex, one should only treat these techniques as heuristics. The experienced flow physicist is apt to iden-
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tify vortices in a flow field based on his own knowledge of the flow characteristics, even if this

judgment is at odds with one of the above definitions.

Notice that the pressure surface in fig. 1a is smoother than the isosurfaces in figs. 1b and 1d. The

latter surfaces are based on derivatives of local flow quantities and are therefore subject to numerical

error due to differentiation. In contrast, pressure is obtained by integration which filters out noise. It

may be difficult, in general, to develop a robust technique for locating vortices if one appeals to quan-

tities derived through repeated differentiation.

The isosurfaces that define the boundaries of the vortices are unstructured sets of polygons. If one

wishes to archive the vortex geometry over the course of hundreds or thousands of time steps, the iso-

surfaces can require large quantities (hundreds of gigabytes) of storage. While techniques exist for

decimating isosurfaces, such decimation is not a trivial task. By contrast, the vortex cores can be repre-

sented economically by one-dimensional curves or polylines. For vortices in the shape of elongated

tubes, skeleton curves together with a radius function provide a natural and efficient representation.

The methodsin the survey all experience success in finding vortices under certain flow con-

ditions. But all of them have problems capturing vortices in unsteady shear flow and/or repre-

senting them in the most economical way. We were led, therefore, to develop another

technique which could tolerate the complexity of a transitional flow (from laminar to turbu-

lent) and would offer substantial data reduction. For comparison, fig. 1e shows the results of

applying our predictor-corrector method with Fourier cross-sections.

3 The Predictor-corrector Method

We now present the heart of our vortex identification scheme: the velocity-predictor, pressure-correc-

tor method.The method was designed to capture elongated vortices (shaped like spaghetti)

rather than broad vortex sheets (shaped like lasagna). The method, like the techniques in the sur-

vey, relies on heuristics: if a point is in a vortex, then the point is expected to possess certain proper-

ties. Possessing those properties does not guarantee that a point is in a vortex, however. The method is

designed to locate the core of the vortex, rather than the surface bounding the entire vortex. The

method uses vector quantities for both the predictor and the corrector steps and uses scalar values as

thresholds.

The predictor-corrector method produces an ordered set of points (the skeleton) that

approximates a vortex core. Associated with each point are quantities that describe the local

characteristics of the vortex. These quantities may include the vorticity, the pressure, the

shape of the cross-section, or other quantities of interest. The method produces lines that are
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similar to vorticity lines, but with an important difference. Whereas vorticity is a mathemati-

cal function of the instantaneous velocity field, a vortex is a physical structure with coherence

over a region of space. In contrast to vorticity lines, which may wander away from the vortex

cores, our method is self-correcting: line trajectories that diverge from the vortex core recon-

verge to the center.

In this section we discuss the procedure used to find an initial seed point on the vortex

skeleton. We then explain the predictor-corrector method used for growing the vortex skeleton

from the seed point. Finally, we address how to terminate the vortex skeleton.

3.1 Finding a Seed Point

Vorticity lines begin and end only at domain boundaries, but actual vortices have no such

restriction. Therefore we must examine the entire flow volume in order to find seed points

from which to grow the vortex skeletons. We consider low pressure and a large magnitude of

vorticity to indicate that a vortex is present. Low pressure in a vortex core provides a pressure

gradient that offsets the centripetal acceleration of a particle rotating about the core. Large

vorticity indicates that such rotation is probably present.These are heuristic arguments: vortical

motion is presumed to be sustained by pressure gradients and to be indicated by vorticity. It is certainly

possible to have low pressure (downstream of an obstacle, for example) or large vorticity (in a shear

flow, for example) without a vortex present. Even so, the combination of the two is a powerful indica-

tor of a vortex.

In our implementation, the flow field (a three-dimensional rectilinear grid) is scanned

along planes perpendicular to the streamwise direction. The scanning direction affects the

order in which vortices are located, but not the overall features of the vortices. In each plane,

the values of the pressure and the vorticity magnitude are checked against threshold values of

these two quantities. A seed point is a grid point that satisfies the two threshold values. Since

new vortex tubes can emerge at any time, we re-scan the 3D grid anew to locate seed points at

each time step. In a more steady flow, one could advect seed points from one time step as ini-

tial guesses at the next time step. Threshold values can be chosena priori, or they can be a

predetermined fraction of the extrema.The thresholds of pressure and vorticity-magnitude can be

fairly strict. It is not necessary to include every point of the vortex core in the set of candidate seeds; it

suffices to capture a single one. Even so, if the threshold of pressure is too low some structures

will be missed entirely. We selected thresholds of pressure and vorticity that capture the essen-

tial structures in the flow field.
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We next refine the position of the seed point so that it is not constrained to lie on the grid.

The seed point moves in the plane perpendicular to the vorticity vector until it reaches the

location of the local pressure minimum. From this seed point we develop the vortex skeleton

in two parts, forward and backward, to reach the endpoints of the vortex tube.

3.2 Growing the Skeleton

The predictor-corrector algorithm is illustrated in the schematic diagrams of fig. 2. The details

for continuing the calculation from one point to the next are indicated by the captions. Steps

1-2 represent the predictor stage of the algorithm. The corrector stage is summarized by steps

3-4.

Once a seed point has been selected, the skeleton of the vortex core can be grown from the seed.

The next position of the vortex skeleton is predicted by integrating along the vorticity vector (fig. 2,

top) which is equivalent to Euler integration of a vorticity line. The predicted point typically misses the

vortex core.

Next we invoke the heuristic that centripetal acceleration within a vortex is supported by low pres-

sure at the core. In a plane perpendicular to the core, the pressure minimum is expected to coincide

with the point where the core pierces the plane. The predicted point must be corrected to the pressure

minimum in the plane that (1) is perpendicular to the core and (2) contains the predicted point. The

location of the nearest core point is the unknown quantity, so condition (1) can only be satisfied

approximately. We approximate the desired plane by choosing the plane perpendicular to the vorticity

vector (fig. 2, bottom).

pi ωi

pi+1

pi+1

(1) (2)

(3) (4)

Figure 2.
Four steps of the predictor-corrector
algorithm.

P

ωi+1

Compute the vorticity at a
point on the vortex core.

Step in the vorticity direction
to predict the next point.

Compute the vorticity at
the predicted point.

Correct to the pressure min
in the perpendicular plane.
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Individually, integral curves of vorticity or of the pressure gradient are each unreliable at

capturing vortex cores. Section 2.2 points out the problems with vorticity lines. The pressure

gradient does not follow the core either; moreover, a vortex may have several distinct pressure

minima in its interior, which would require piecewise integration of the gradient in order to

connect the components of the core. Remarkably, the combination of the vorticity and the

pressure gradient provides a robust method of following the vortex core. The continuous mod-

ification of the skeleton point lessens the sensitivity to both the initial conditions and the inte-

gration details.

The effectiveness of the predictor-corrector scheme is illustrated in fig. 3, in which data

from the direct numerical simulations of Singer and Joslin [18] are analyzed. The transparent

vortex tube (a portion of a hairpin vortex) is constructed with data from the full predictor-cor-

rector method. Its core is indicated by the darker skeleton. The lighter skeleton follows the

uncorrected integral curve of the vorticity. It is obtained by disabling the corrector phase of

the scheme. The vorticity line deviates from the core, exits the vortex tube entirely, and wan-

ders within the flow field. By appealing to Robinson’s ideal definition of a vortex we are able

to confirm that the predictor-corrector skeleton is the one that follows the core. The velocity

fields around the skeleton are consistent with nearly-circular streamlines in Robinson’s char-

acterization; those around the vorticity line are eventually not.

3.3 Terminating the Vortex Skeleton

Vorticity lines extend until they intersect a domain boundary, but real vortices typically begin

and end inside the domain. Therefore, the algorithm must always be prepared to terminate a

given vortex skeleton. A simple condition for termination occurs when the vortex cross-sec-

Figure 3.
Vorticity line (light) compared to
predictor-corrector line (dark). Note
that the vorticity line exits from the
vortex tube while the predictor-
corrector skeleton line follows the
core.
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tion (discussed in section 4) has zero area. As fig. 3 shows, the reconstructed vortex tubes

taper down to their endpoints, where the cross-section vanishes.The predictor-corrector method

is not guaranteed to terminate. On rare occasions the skeleton can enter a nearly-circular loop (fig. 4).

We have observed this undesirable phenomenon in a small fraction of the skeletons. The spirals seem

to occur in the vicinity of vortex junctures, but we have no reason to believe that the vortex core truly

enters a closed loop. There are examples of this phenomenon in other works, although those examples

do not receive any particular discussion. Figs. 5 and 6 show similar situations in other simulated flows

[19] [10] where a vorticity line enters a tight spiral. In order to guarantee termination, we exploit our

knowledge of the spatial extent of the 3D computational domain and limit the total arclength along a

skeleton to be about twice the longest grid dimension.By guaranteeing termination in this way, we

find that an average time step requires about 1400 Cray-seconds in calculating the 3D numer-

ical simulation of the flow and about 20 Cray-seconds in identifying the vortex cores and cal-

culating their cross-sections.

Figure 4.
Vortex skeleton at time 194.4 located by the predictor-
corrector method. Note the spiral in the center.

Figure 5.
Vorticity lines in a shear layer near a wall. Note the
spiral near the top. From Jiminez and Moin,JFM  v.
225, p. 235. Cambridge University Press 1991.
Reprinted with the permission of Cambridge
University Press.

Figure 6.
Tangle of vorticity lines in a turbulent flow. Note the
spiral near the bottom. From Kim and Moin, JFM  v.
162, p. 343. Cambridge University Press 1986.
Reprinted with the permission of Cambridge
University Press.
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3.4 Filaments That Connect Vortex Tubes

Sometimes it is useful to continue the skeleton beyond the end of the vortex tube. For

instance, if a low-intensity region exists between high-intensity regions of the same vortex,

then the low-intensity region might not satisfy the criteria for a finite cross section. One would

like to see the connective filament between two strong vortices even if the connection does not

satisfy the requirements for a non-zero cross-section. The criteria for determining the cross-

section can be made more generous in order to capture the connection, but this strategy does

not solve the problem: in addition to capturing the weak connective vortex, we will also cap-

ture unwanted low-intensity structures that may themselves possess regions that are weaker

still. Our resolution of this problem exploits the asymmetric nature of the predictor-correction

method.

Because the predictor-corrector method follows the core of a vortex regardless of the cri-

teria used to define the vortex cross section, the vortex skeleton can be extended even when

the cross-sectional area of the vortex is equal to zero. The vortex of interest may either re-

intensify or dissipate; if the vortex re-intensifies then the continuation of the skeleton line will

provide a link between the two more-intense regions of the vortex. This link can be visualized

as a thread that connects the two disjoint regions. On the other hand, if the vortex dissipates,

the continuation of the skeleton line will wander through the flow field and eventually either

intercept a domain boundary or enter a new vortex. If a domain boundary is reached, then the

segments of the skeleton that lie outside the last-found vortex (having non-zero cross-section)

are discarded. Similarly a potentially connective filament is discarded if it enters a new vortex

from the side, rather than through one of the vortex endpoints.

To determine whether a new-found region of finite cross section is a continuation of the

original vortex or an entirely different vortex, we march the predictor-corrector scheme back-

wards for the same number of steps taken since the previous region of nonzero cross section

was exited. Some possible scenarios are illustrated in figs. 7-9. In fig. 7, the skeleton line

leaves the first vortex tube at pointp1 and continues forn steps until it encounters the second

vortex tube at pointp2. The predictor-corrector scheme is then marched backwardsn steps

from p2 to p3. The distance between pointsp1 andp3 is small relative to the distance between

p1 andp2 (a 10-percent criterion is used); hence, the link betweenp1 andp2 is most probably

a low-intensity vortex, and we retain the connective thread between these vortex tubes.
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However, in fig. 8 the vortex tube dissipates beyond pointp4, and the continuation of its

skeleton lacks clear direction and wanders through the flow field. The line intercepts another

vortex tube atp5 afterm steps. The predictor-corrector method is marched backwardsm steps

from p5 to p6. Initially, the reverse integration retraces the forward integration, but halfway

betweenp5 andp6 the two lines diverge rapidly and become uncorrelated. The distance from

p4 to p6 is a large fraction of the distance fromp4 to p5, so the algorithm concludes that the

vortex tube intersected atp5 is different from the vortex tube that ends atp4. The points on the

vortex skeleton line that connect the two tubes are discarded, and the vortex skeleton is termi-

nated.

Finally, in fig. 9, the continuation of the skeleton line of the vortex tube that ends at point

p7 intersects the side of another vortex tube (shown as a wireframe) and is immediately car-

ried to the pressure minimum atp8. The reverse integration for this case follows along the axis

Figure 7.
Forward integration from p1 to p2 gives
approximately the same path as reverse
integration from p2 to p3. Points p1 and
p2 are therefore connected by a weak
vortex.

p1

p3

p2

Figure 8.
Forward integration from p4 to p5 differs
markedly from reverse integration from p5
to p6. The two vortex tubes are not
connected; the core of the vortex on the left
terminates at p4.

p4
p6

p5

Figure 9.
Integration from p7 to p8 intersects side of
vortex tube (wireframe). Reverse
integration from p8 to p9 follows axis of the
new vortex, away from original tube. The
vortex tubes are not connected.

p7

p8

p9
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of the new vortex tube away from the original vortex. The pointp9 is far fromp7; hence, the

two vortex tubes are distinct from each other and the line connecting them is discarded.

3.5 Implementation Details

Optimal performance of the predictor-corrector technique requires careful attention to imple-

mentation details. This section addresses issues that are important to the successful use of the

method. It is not exhaustive; additional details are provided by Singer and Banks [20].

Eliminating Redundant Seeds and Skeletons

Recall that seed points are chosen based on pressure and vorticity-magnitude, allowing multiple seeds

to generate a given vortex core.Sampling every grid point produces an overabundance of seed

points and hence a multitude of nearly-coincident vortex skeletons (fig. 10).These skeletons

each follow the same core, sampling it at different locations;yet one representative skeleton suf-

fices. The redundancies are eliminated when points inside a tube are excluded from the pool

of future seed points. We accomplish this by flagging any 3D grid cell in the computational

domain that lies within a spherical volume of a skeleton point. The constant term of a Fourier

representation of the cross-section’s radius (see section 4.2) is taken to be the radius of the

spherical volume.A future candidate seed is ignored if it lies in a flagged cell.

Eliminating Spurious Feeders

A seed near the surface of the vortex tube can produce a “feeder” vortex skeleton that spirals

toward the vortex center. Intuitively, these seeds lie within grid cells that should have been

flagged but were missed because they lie slightly outside the spherical volumes of exclusion.

Examples of these feeders are illustrated in fig. 11. We eliminate feeders by taking advantage

of the fact that the predictor-corrector method is convergent to the vortex core. A feeder skel-

eton, begun on the surface of the tube, grows toward the core; by contrast, a skeleton growing

along the core does not exit through the surface of the tube. To validate a candidate seedp0,

we integrate forwardn steps to the pointpn and then backward again byn steps. If we return

Figure 10.
Multiple realizations of the same vortex
tube from different seed points. Each seed
point generates a slightly different skeleton
line, although all the skeletons remain close
to the vortex core.
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very close top0 then the candidate was a “true” seed point. This is the same reverse-integra-

tion strategy that is used for establishing that a filament actually connects two vortical regions.

Numerical Considerations for Interpolation

Neither the predictor nor the corrector step is likely to land precisely on a grid point; hence,

we must interpolate the pressure and vorticity within the flow field. A linear approximation of

the pressure gradient (the corrector step) will possess minima only at grid points. A three-

point quadratic interpolation can produce minima within grid cells, but a three-point interpo-

lation within a cell introduces bias toward one side or the other. To reduce any bias from the

interpolation, we use a four-point Lagrange interpolation (found in textbooks on numerical

computation) in each of the three coordinate directions. The high-order interpolation is justi-

fied by the accuracy of the numerical simulation, which is spectral in the spanwise and wall-

normal directions (Fourier and Chebysheff, respectively) and fourth-order in the streamwise

direction. The interpolation scheme works quite well, although it is the most expensive step in

our implementation.

The interpolation scheme makes the predictor-corrector method at least first-order accu-

rate: skeleton points are located to within the smallest grid dimension. This ensures that, on

data sets with well-resolved vorticity and pressure, the method successfully locates vortex

cores.

Predictor Step

The vorticity integration can be performed with a variety of methods. First, we used a fourth-

order Runge-Kutta approach. This produced satisfactory results; however, step-size optimiza-

tion was difficult to automate. Instead, we developed a technique whereby the point-to-point

distance in the vorticity integration is always equal to the smallest dimension of the local grid

cell. The new point location is found by advancing this distance in the direction of the local

Figure 11.
Feeders merge with a large-scale hairpin
vortex. Three points that satisfy the
threshold criteria lie on the edge of the
vortex tube. Their trajectories curve inward
toward the core and then follow the main
skeleton line.
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vorticity vector. This procedure ensures that successive points will not be more than one grid

cell apart, so that if the original calculation is well resolved, then the vorticity-line calculation

will also be sufficiently resolved. The procedure also reduces the chance of wasting many cal-

culations inside a single grid cell.

Corrector Step

Our implementation of the pressure-minimum correction scheme uses the method of steepest

descent to find the local pressure minimum in the plane perpendicular to the vorticity vector.

The smallest grid-cell dimension is used as a local length-scale to march along the gradient

direction.

The corrector phase can be iterated in order to converge to the skeleton, but such conver-

gence is not guaranteed. We therefore limit the angle that the vorticity can change during a

repeated iteration of the corrector phase, requiring that the cosine of the angle between the

predicted and corrected vorticity be at least 0.9. In case it is not, we simply quit the corrector

phase. We could choose a smaller step-size and re-try, but we have not found this to be neces-

sary.

4 Finding the Cross-section

Having produced skeletons that follow vortex cores, we must next determine the shapes of the vortices

through which they pass. A vortex generally assumes an elongated shape which is well-approximated

locally by a cylinder. Our goal is to determine the cross-sections of the vortex tubes in planes perpen-

dicular to the core. Since it is unclear how to precisely define which points lie in a vortex (see section

2), it is also unclear how to determine the exact shape of a vortex tube’s cross-section. Determining an

appropriate measure of the vortex cross-section has been one of the more difficult practical aspects of

this work.

A point on the vortex skeleton serves as a convenient center for a polar coordinate system

in the plane perpendicular to the skeleton line. We have chosen therefore to characterize the

cross-section by a radius function. Note that this scheme correctly captures star-shaped cross-

sections. Cross-sections with more elaborate shapes are truncated to star shapes, with discon-

tinuities in the radius function (fig. 12). In practice this choice does not seem to be very

restrictive, as section 4.2 indicates.

In examining the cross-section plane there are two important questions to address. First,

what determines whether a point in the plane belongs to the vortex tube? Second, how should
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the shape of the tube’s cross-section be represented? This section summarizes the strategies

that we found to be successful.

4.1 Criteria for Determining Membership

As the survey demonstrated, there are many heuristics for deciding whether a point is a member of a

vortical structure. Most techniques appeal to some scalar quantity derived from flow quantities: a cer-

tain threshold of that quantity determines membership in a vortex. Since the predictor-corrector

method relies on pressure and vorticity, we wish to re-use these quantities for determining membership

in a vortex. For massive datasets there is a significant penalty for storing or calculating additional sca-

lar quantities.

For isolated vortices, a threshold of pressure provides an effective criterion to determine

whether a point belongs to a vortex. But when two or more vortices interact, their low-pres-

sure regions merge and distort the radius estimate of any single vortex. This difficulty is

resolved if the angle between the vorticity vector on the skeleton line and the vorticity vector

at any radial position is restricted. Any angle greater than 90 degrees indicates that the fluid at

the radial position is rotating in the direction opposite to that in the core. We have found that

the 90-degree restriction works well in combination with a low-pressure criterion for the vor-

tex edge.

For the actual computation of the radial distance, the pressure and the vorticity are sam-

pled along radial lines, emanating from the skeleton, lying in the perpendicular plane. We step

along each radial line until a point is reached that violates the vorticity or the pressure-thresh-

old criterion.

θ = 0

θ = 0 θ = 2π

ra
di

us

Figure 12.
Representation of the cross-section in
polar coordinates. The star-shaped
interior (gray) of a non-convex curve
(black) is represented by a radius
function (bottom). In general, the vortex
cross-sections have continuous, periodic
cross-sections suitable for Fourier
representation.



18

4.2 Representation of the Cross-section

If the radius of the cross-section were sampled at 1-degree increments, then 360 radial dis-

tances (and a reference vector to define the 0-degree direction) would be associated with each

skeleton point. That is a great deal of data to save for each point of a time-varying set of vor-

tex skeletons. We have found that an average radius is sufficient to describe the cross-section

of an isolated vortex tube.

When vortices begin to interact, the cross-section becomes non-circular and so the average

radius does not provide a good description of its shape. A truncated Fourier representation of

the radial distance provides a convenient compromise between the average radius and a full

set of finely-sampled radial locations. The series is easy to compute, easy to interpret, and

allows a large range of cross-sectional shapes. In our work, we keep the constant term, the first

and second sine and cosine coefficients,the vorticityω, and a unit reference vectorx that defines

the 0-degree direction in the cross-sectional plane. The cross-sectional radius is thus parametrized by

r(t) = a0 + a1 cost + b1 sin t + a2 cos 2t + b2 sin 2t

where0 ≤ t ≤ 2π.

In general, the magnitudes of the last two coefficients (a2 andb2) are comparatively small, indicat-

ing that the neglected terms are not significant. That observation also validates our assumption that the

cross-section is well-represented by a continuous polar function.

Fig. 13 illustrates a single cross section of a vortex extracted from direct numerical simu-

lation data. The shaded region is the interior of the vortex tube, sampled at 1-degree intervals.

The thin line is a circle, centered at the skeleton, showing the average radius of the vortex

Figure 13.
Comparison of different ways to
represent the cross-section of a vortex
tube. The shaded region is the finely-
sampled radius function. The thin line
is an approximating circle. The thick
line is a 5-term Fourier
representation.
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tube. The thick line is the truncated Fourier series representation of the vortex cross-section,

providing a better approximation than the circle.

In our time-varying data a single vortex develops into 44 vortices over the course of 231 time

steps. In total there are 3,584 individual cores and 365,839 positive-area cross-sections. We calculated

the relative energy represented by the last Fourier coefficients according to the fraction

In 87% of the cross-sections, the relative energyErel due to the last two coefficients accounts for less

than one-tenth of the total energy.

5 Data Reduction and Reconstruction

Time-varying volumetric datasets generally consume vast amounts of storage. This section is

concerned with the problem of reducing the data size to permit an interactive examination of a

time-varying flow. The typical non-interactive avenue for producing an animation of 3D volu-

metric structures is to extract isosurfaces at each time step, generate an image frame, and

record each frame to videotape or to disk. The individual datasets may take a long time to

retrieve from remote mass-storage devices and the isosurfaces may take a long time to extract,

but this pre-processing step is incurred only once to produce an animation. Replaying the ani-

mation on a workstation presents other problems. A two-minute animation, at 30 frames per

second, requires 3600 frames. A full color frame, at a resolution of only 640×480 pixels,

requires about a megabyte. The total of 3.6 gigabytes of storage exceeds the range of current

workstation memories. The animation can be compressed using MPEG, but decoding and dis-

playing it at 30 frames per second is a challenge. Even if the animation could be replayed con-

veniently, the general strategy of extracting isosurfaces from massive remotely-stored

volumetric datasets does not promise interactive exploration of the time-varying flow in the

foreseeable future.

There are alternative techniques for compressing the volumetric data and even for render-

ing images from the compressed format. Ning and Hesselink [21] report compression factors

of about 5-fold by using vector quantization. The technique improves the performance of their

volume renderer to about one minute per frame. Shen and Johnson [22] use frame-to-frame

differencing, with a fixed viewpoint, to achieve compression factors up to about 700-fold at a

rendering rate of better than one second per frame. We desire a scheme that offers both sub-
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stantial data reduction to permit local storage and fast rendering to permit real-time interac-

tion.

There are techniques that reduce the number of polygons in a surface representation of a

solid, as opposed to rendering it volumetrically. By visualizing only the polygonalized bound-

aries of vortex tubes, one benefits from the fast rendering speed of the graphics hardware, as

compared with a slower volume-rendering of the vortex interiors. Hoppe [23] reduced the

polygon count of unstructured meshes by factors of 10 to 16. Turk [24] reduced the polygon

count of unstructured meshes by factors of 10 to 18. Schroeder [25] used multiple passes to

reduce the polygon count by factors of up to 10. These techniques are designed to apply to

somewhat arbitrary surface shapes. In the case of vortex tubes we exploit their elongated

cylindrical shape to achieve even more aggressive data-reduction using the Fourier series. In

addition we are able to specify, at run-time, the polygonal resolution of the reconstructed vor-

tex tubes. The details of reduction and reconstruction are described below.

We performed a flow simulation using Cray computers over the course of two calendar

years, using about 2000 Cray2 hours of processing time. The numerical grid grows with the

size of the evolving flow structures from an initial grid size of 301×121×41 (in the stream-

wise, wall-normal, and spanwise directions) to a final grid size of 461×161×275. Each grid

point holds 1 data-word for pressure and 3 data-words for vorticity. A Cray word is actually 8 bytes,

but 4 bytes per word would be adequate. The storage needs for each time step range from 24 mega-

bytes to 326 megabytes, assuming a 4-byte word. The entire set of 3D grids requires at least 45

gigabytes of storage.By using vortex skeletons with Fourier-series cross-sections we are able to

reduce the data significantly and then reconstruct the vortex tubes locally on a workstation.

5.1 Data Reduction

In our DNS data, a typical vortex skeleton is a polyline composed of 30 to 200 samples. The

time steps in the numerical simulation are non-uniform: the non-integer time increment is

determined by bounding the amount of integration error it introduces. The vortex tubes pic-

tured in fig. 7 are calculated at time step 152.8 and contain 1397 skeleton points. Each sample

in a vortex skeleton requires 60 bytes of data to represent its position, tangent, reference vec-

tor, cross-section coefficients, and velocity magnitude. Thus a reduction from 227 MB to

84 KB is achieved at this particular time step, a 3000-fold improvement over the volumetric

data size.
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Fig. 14 shows the reduction factors for the vortices over a range of time steps. At the end

of the simulation the flow becomes fully turbulent and the 3D grid contains many interacting

vortices over a large sub-volume of the computational domain. Even so, the technique contin-

ues to reduce the dataset by factors of one to three thousand. The vortex data from the entire

simulation can be reduced from the 45 GB volumetric grid to a 24 MB skeletal representation.

This is an average reduction factor of about 1800.

5.2 Faithful Reconstruction

The significant data-reduction that vortex skeletons provide does not come without cost.

There is still the matter of reconstructing polygonal tubes from the skeletons. If the tubes have

circular cross-sections, they are generalized cylinders. Bloomenthal gives a clear exposition

of how to reconstruct a generalized cylinder from a curve through its center [26]. The coordi-

nate system of the cross-section usually twists from one skeleton point to the next. The key

issue is how to keep the rate of rotation about the skeleton’s tangent vector small. Excessive

twist is visible in the polygons that comprise the tube: they become long and thin and their

interiors approach the center of the tube (fig. 15).Our tubes are not cylinders: the additional terms

in the Fourier series produce non-circular cross-sections. But a coordinate frame that twists along the

skeleton will produce the same visible artifacts in a polygonal mesh.
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Figure 14.
Reduction factors achieved using vortex
skeletons. Horizontal axis indicates time
step in the numerical simulation of an
unsteady flow. Vertical axis indicates
ratio of the size of original 3D grid to the
size of the skeletal representation of
vortices.
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Figure 15.
A quadrilateral mesh connects
consecutive cross-sections (each with 8
samples) in a tube. On the left, 20° of
twist between cross-sections causes the
mesh to skew. On the right, the cross-
section at the back has samples which
are aligned with those at the front.
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In order to reduce twisting of the coordinates, we project the coordinate bases from one

cross-section onto the next cross-section (fig. 16). Let pk be a point in the vortex skeleton with

normalnk and binormalbk. The tube’s cross-section lies in the planeLk defined by coordinate axesnk

andbk. The following pointpk+1 has cross-section planeLk+1. We projectnk onto planeLk+1 to pro-

duce a new normal vectornk+1. This produces a new coordinate system that has not twisted compared

to its predecessor. The initial normaln0 and binormalb0 can be chosen in a variety of ways. We use

(1, 1, 1)× ω as an initial choice of the normal vectorn0, whereω is the vorticity and the coordinates

tuple corresponds to the (stream, wall-normal, spanwise) directions. In the rare case that (1, 1, 1) and

ω are aligned, we use (1, 0, 0) as a second choice to produce the normal vector.The new normal vec-

tor might be different from the reference vector (which indicates the 0-degree direction) for

the Fourier representation of the cross-section. To reconstruct the cross-section, we phase-

shift the angle in the Fourier series by the angular difference between the normal and the ref-

erence vector.

In general, 20 to 80 samples suffice to reconstruct a cross-section of acceptable image-

quality.We keep the number of cross-sectional samples constant along a reconstructed vortex tube so

that the tube can be represented as a quadrilateral mesh. Many graphics libraries have drawing routines

that are optimized for quadrilateral meshes.

Our original 3D grids, over 230 time steps, require at least 45 GB of storage. But in the recon-

structed vortex tubes there are only 404,428 skeleton points. A point on the polygonal mesh requires

27 bytes (for position, normal, and color). If each cross-section has 20 samples, the entire polygonal-

ized, time-varying dataset requires about 220 MB of storage, which is easily within the reach of large-

memory workstations.

nk

bk

nk+1

Figure 16.
Basis vectornk at a point pk on a curve is
projected onto the cross-section plane
Lk+1 to produce a new basis vectornk+1.

Lk

Lk+1
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5.3 Enhanced Reconstruction

Sometimes there is good reason for a “reconstruction” that is not faithful to the original shape

of the vortex tube. The faithful reconstruction in fig. 1e does not convey the spiraling motion

along the surface of the vortex tube. We experimented with different methods of visualizing

the velocities on the tube itself. One helpful technique is to create a texture on the surface,

drawing curves to indicate the helical flow. This visualization is enhanced dramatically when

the curves are displaced inward to produce grooves.

Fig. 17 demonstrates this technique on a single hairpin vortex. The grooves follow integral

curves of the surface-constrained velocity vectors. That is, a curve is developed on the surface

of the tube by projecting the velocity vectors onto the tube surface and integrating. The three

curves in the figure begin from initial trajectories that are shifted in phase by increments of

120 degrees. In an informal survey of a dozen colleagues, we found that none could estimate

the amount of helical motion in a faithful reconstruction (as in fig. 1e) of a vortex tube; after

all, there are no visual indications of the vortical motion. On the other hand, the same subjects

instantly identified the direction and amount of rotation in the enhanced image of fig. 17. The

model in the figure uses over 250,000 polygons to represent the vortex. This polygon count is

prohibitively large for contemporary graphic systems to display in real time. For a static visu-

alization, however, a large polygon count is reasonable in the trade-off between image quality

and rendering speed. As graphics architectures begin to deliver 30 million polygons per sec-

ond [27], we expect that such enhanced reconstructions of flow features will become more

common.

Figure 17.
Enhanced reconstruction of a
hairpin vortex tube. The grooves
follow integral curves of velocity,
constrained to follow the surface of
the tube.
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5.4 Interactive Time-Varying Visualization

The predictor-corrector scheme was developed in order to visualize vortical structures in a time-vary-

ing turbulent flow. The scheme has the added benefit that it represents the vortex tubes very efficiently.

We wish to visualize and explore the flow dynamically; to that end we have developed an interactive

application called “Tracktur” [28] which allows investigation of the vortices as they evolve in a flow.

There are other systems that have been developed for similar purposes [29] [30]. Tracktur differs from

them by exploiting the data-reduction that the predictor-corrector scheme provides in order to display

vortices in an unsteady flow. In addition, Tracktur provides 3D head-tracking, stereo display, and 3D

hand-tracking to let a viewer navigate among the vortices and probe quantitative values within the

flow. The system sustains about 15 updates per second on a full-screen display of about 8000 polygons

using the Silicon Graphics Onyx with Reality Engine 2 graphics.

Our ultimate goal is to better understand how a turbulent spot develops. Since this is a complex

and dynamic process, we expected that a time-varying visualization tool like Tracktur would provide

significant support. Other researchers report modest success in applying visualization systems to study

scientific problems of interest to them [31] [32]. By using Tracktur we have discovered a backward-

tilting S-shaped vortex head (fig. 18) that had been seen experimentally in a similar flow (fig. 19) [1],

but had not been identified before in the flow data we were investigating.

6 Future Work

There are two important issues in data-reduction and reconstruction still to be addressed. First,

we would like to minimize the number of samples along a vortex skeleton. Where the vortex

skeleton has high curvature or where the cross-section changes shape quickly, many samples

are required to produce an accurate reconstruction. But most vortex tubes have long, straight

portions with nearly-circular cross-sections of nearly-constant radius. This characteristic

should permit us to represent the vortex tube with fewer samples along its skeleton.

Figure 18.
S-shaped vortex head at time 184.6
displayed in the Tracktur system. The
white stripes on the flat plate mark units
in the computational domain.
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The second issue concerns interpolation. In reviewing the development of a vortical flow,

a scientist may be especially interested in narrowing the interval of animation to only a few of

the original time steps. It would be helpful to generate in-between frames from the given data.

One could interpolate the original 3D grids to extract interpolated vortex skeletons, but that

would require a great deal of data communication and computation. Interpolating between the

skeletal representations, on the other hand, could be done in memory. Unfortunately, it is diffi-

cult to interpolate vortex tubes as they appear, branch, merge, and disappear over time. Other

researchers have addressed the issue of matching corresponding isosurfaces in unsteady flows

[33]. Matching and interpolating the skeletal representation remains as future work. Concern-

ing the enhanced vortex reconstruction, it may be possible to animate the spiral grooves by

advecting the displacement coordinates according to the flow velocities. Max, Crawfis, and

Williams have used a similar technique to visualize wind velocities [34].

7 Conclusions

The innovative use of a two-step predictor-corrector algorithm has been introduced to identify

vortices in flow-field data. Unlike other approaches, our method is able to self-correct toward

the vortex core even in a turbulent shear layer. The principle of using the vorticity vector field

to predict the location of the next point and the gradient of the scalar pressure field to correct

this position distinguishes this method from others. The theoretical justification for the tech-

nique is that vortices are generally characterized by large magnitudes of vorticity and low

pressures in their core. The presence of these two characteristics in a cross-section defines the

shape of the vortex interior.

Induced
velocity

Edge of the
boundary layer Figure 19.

S-shaped vortex head in an
experimental shear flow over a flat
plate. Top: schematic diagram of the
profile. From Acarlar and Smith, JFM
v. 175, p. 71. Cambridge University
Press 1987. Reprinted with the
permission of Cambridge University
Press. Bottom left: dye injected into the
flow develops into an upright head.
Image courtesy of C. R. Smith. Bottom
right: intensity gradients of the image at
left produce a bas-relief image.
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This paper discusses a number of novel approaches that we have developed to deal with

matters such as eliminating redundant vortices, eliminating feeders, and representing the

cross-section of a vortex tube. Sample extractions of vortices from various flow fields illus-

trate the different aspects of the technique.

The vortex skeletons are an economical way to represent vortical structures within a flow,

offering data-reduction on the order of more than a thousand-fold even in a complex flow.

This presents an opportunity to store hundreds of frames of vortex geometry in workstation

memory. As a proof of concept, we implemented a system that lets a user interactively explore

an evolving turbulent spot. Where interactivity is not important, a vortex tube can be

enhanced during reconstruction by modelling grooves in the surface in order to help display

the dynamics of vortical flow in a static image.
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